Radar has landed - discover the latest DDoS attack trends. Get ahead, stay protected.Get the report
Under attack?

Products

Solutions

Resources

Partners

Why Gcore

  1. Home
  2. Blog
  3. How to apply artificial intelligence in medicine and healthcare

How to apply artificial intelligence in medicine and healthcare

  • By Gcore
  • January 21, 2021
  • 5 min read
How to apply artificial intelligence in medicine and healthcare

According to the Grand View Research consulting company, global spending on artificial intelligence in medicine and healthcare amounted to $2.5 billion in 2018. The introduction of technologies that include algorithms for analyzing big data (information about the state of health of the population, the results of laboratory and genetic research) and automatic speech recognition systems, is aimed at achieving the following main goals:

  • Reducing the number of medical errors leading to, among other things, death, by increasing the accuracy and speed of diagnosis.
  • Ensuring more effective interactions between doctor and patients by reducing the administrative burden on medical personnel.
  • Reducing costs and accelerating the development of new drugs.

Let’s consider several scenarios for using artificial intelligence technologies in medicine and healthcare.

Epidemiology

Artificial intelligence and cloud services have become especially popular during the coronavirus pandemic, as they made it possible to provide the following:

  • real-time collaboration by medical professionals using communication platforms with built-in artificial intelligence capable of recognizing spoken and written speech in different languages (chat bots, voice assistants, machine translation systems);
  • fast diagnosis based on the analysis of medical images (including chest CT scans);
  • monitoring of patients;
  • accelerated drug development;
  • forecasting of the spread of the disease.

In China, where the first coronavirus patients were recorded in December 2019, a set of solutions based on artificial intelligence and cloud services was proposed in March 2020 to combat the pandemic.

DingTalk communication platform. A platform for the international exchange of experience in diagnostics, treatment, and counteraction to the spread of the coronavirus infection. Medical workers communicate in a group chat where artificial intelligence translates users’ text messages in real time. The system supports 11 languages: Arabic, Indonesian, Chinese, English, French, Japanese, Russian, Spanish, Thai, Turkish, and Vietnamese. A video conferencing format is available for remote diagnostics.

Epidemic forecasting system. Artificial intelligence is used to simulate the spread of the coronavirus infection in various regions of the world. When developing the algorithmic model, statistics were used on sick, dead, and recovered patients in the provinces of China.

CT image analysis system. The AI-powered system was trained based on 5,000 medical chest images of Chinese patients. According to the developer, the accuracy of diagnosing coronavirus is 96%. The time required to analyze a CT scan is less than 10 seconds.

The ability to accelerate machine learning is one of the strengths of the Gcore AI Platform. It’s suitable for testing and launching AI-based medical applications in emergency conditions.

Radiology tests

Analysis of medical images (for example, CT and MRI images) for diagnosing diseases (primarily oncological ones) forms the basis of the scientific field called radiomics which is developing at the intersection of radiology, computer technology, and mathematical statistics. It is expected that the future use of artificial intelligence will allow doctors to abandon invasive diagnostic procedures accompanied by a high risk of complications and discomfort for the patient (for example, endoscopy or biopsy).

The analysis of medical images based on artificial intelligence and cloud services has already increased the accuracy of detecting diseases and predicting their development. This is achieved by training algorithms based on big data collected in medical institutions from patient examinations.

The Artificial Intelligence Laboratory of the American College of Radiology has developed an open, scalable platform available for implementation and use in specialized clinics and research institutes in the United States without additional software costs. This solution allows radiologists who don’t have programming skills to apply artificial intelligence technologies in their practice for the following purposes:

  • to analyze datasets;
  • to develop algorithms and models for machine learning;
  • to evaluate their effectiveness in diagnosing patients and predicting the development of diseases;
  • to share the results with colleagues.

According to the developers, the platform meets the safety requirements set by the US Department of Health and Human Services.

Digital medical records

Artificial intelligence makes it easier to work with patients’ medical records, relieving doctors from unnecessary administrative burden. The time they have to spend filling out paperwork is reduced thanks to voice assistants. The integration of the Dragon Medical One platform with AI-based speech recognition technology for electronic medical records allows, according to the manufacturer, to input information about the patient’s health status and the course of treatment 45% faster and 20% more detailed than when doctors input it manually using the keyboard.

Digital medical records contain data both in structured (test results) and unstructured forms (patient complaints, doctor’s recommendations). Artificial intelligence allows you to quickly search and process information of various formats for an accurate diagnosis.

All the necessary tools for creating and developing solutions that can analyze data from electronic medical records are integrated into our AI Platform. Our specialists will offer the optimal system configuration to implement the ideas of medical application developers.

Preventive diagnostics

Artificial intelligence and cloud services help identify predisposition to the development of the disease, allowing patients to start treatment as early as possible.

To assess the risks of developing various diseases (including diabetes, hypertension, and atherosclerosis), the Airdoc AI system uses images of the retina. Early detection of symptoms allows treatment to begin sooner, which helps avoid serious complications such as blindness and stroke in diabetic patients.

High-resolution medical images from a digital scanner are transferred to the cloud for further processing. AI algorithms analyze images of the patient’s retina in both eyes for abnormalities (such as spots and deformed blood vessels) in 20 to 30 milliseconds. Diagnostic results with information on the level of risk for 30 diseases are then sent to the patient’s email address.

A multipurpose AI Platform will help reduce the cost of implementing new solutions in the field of preventive diagnostics. It contains ready-made data processing frameworks and, at the same time, is suitable for developing unique algorithms for the specialized tasks of medical applications.

Medical robots

Robotics in healthcare provides high precision and safety in surgical operations, during endoscopic diagnostics, and in therapeutic procedures.

Robots act as intermediaries between doctors and patients. For example, the Mabu companion helps check the health of patients with heart failure, rheumatoid arthritis, or liver cancer. AI-based speech recognition technology allows the robot to learn the peculiar features of the patient through daily conversation.

Mabu asks questions about the patient’s well-being, medical parameters (e.g. weight), and symptoms of the disease (in case of heart failure, shortness of breath should be monitored). The robot then transmits the received information to the doctor, nurse, and pharmacist, who then dispenses the necessary medicines. After receiving the prescriptions, the robot monitors the course of treatment: it provides the patient with necessary recommendations and reminds them to take their medication.

A new approach to providing medical care

Artificial intelligence will change the way people think about the healthcare system, as well as the healthcare services available to patients.

Wearable electronic devices that measure vital signs will provide regular health monitoring. Artificial intelligence will analyze the collected data and warn the patient in advance about the need to seek medical help.

According to the startup Current Health, their AI platform for remote health monitoring can detect over 100 diseases. The wireless wearable electronic device, which is attached to the patient’s arm, monitors their pulse, pressure, temperature, and other medical parameters on a daily basis. The data is analyzed by artificial intelligence, making it possible to identify the risk of complications at an early stage.

The application, available on stationary and mobile devices, contains detailed information about the patient’s condition. The built-in chatbot asks questions about patient’s health and symptoms. Consultations with a physician are available in video format. The platform is integrated with digital medical records.

Support for vital bodily functions using artificial intelligence is a promising area of biomedical research associated with the reproduction of lost functions in patients with disabilities using robotic prostheses and augmented reality technologies. The future development of neurocomputer interfaces will facilitate the joint work of artificial intelligence and the human brain.

In 2019, the universities of North Carolina and Arizona (USA) introduced a jointly-developed automatic knee prosthesis adjustment system. While it takes up to several hours to adjust all 12 parameters of a robotic joint manually to ensure normal walking, artificial intelligence copes with the task in just 10 minutes.

For healthcare institutions and IT companies that develop medical applications, we are ready to provide a reliable, powerful, and secure AI Platform with full-cycle machine learning support.

The Gcore cloud services are efficient, profitable, easy to use, and will improve the quality of medical services.

Sign up for the cloud

Related articles

How gaming studios can use technology to safeguard players

Online gaming can be an enjoyable and rewarding pastime, providing a sense of community and even improving cognitive skills. During the pandemic, for example, online gaming was proven to boost many players’ mental health and provided a vital social outlet at a time of great isolation. However, despite the overall benefits of gaming, there are two factors that can seriously spoil the gaming experience for players: toxic behavior and cyber attacks.Both toxic behavior and cyberattacks can lead to players abandoning games in order to protect themselves. While it’s impossible to eradicate harmful behaviors completely, robust technology can swiftly detect and ban bullies as well as defend against targeted cyberattacks that can ruin the gaming experience.This article explores how gaming studios can leverage technology to detect toxic behavior, defend against cyber threats, and deliver a safer, more engaging experience for players.Moderating toxic behavior with AI-driven technologyToxic behavior—including harassment, abusive messages, and cheating—has long been a problem in the world of gaming. Toxic behavior not only affects players emotionally but can also damage a studio’s reputation, drive churn, and generate negative reviews.The online disinhibition effect leads some players to behave in ways they may not in real life. But even when it takes place in a virtual world, this negative behavior has real long-term detrimental effects on its targets.While you can’t control how players behave, you can control how quickly you respond.Gaming studios can implement technology that makes dealing with toxic incidents easier and makes gaming a safer environment for everyone. While in the past it may have taken days to verify a complaint about a player’s behavior, today, with AI-driven security and content moderation, toxic behavior can be detected in real time, and automated bans can be enforced. The tool can detect inappropriate images and content and includes speech recognition to detect derogatory or hateful language.In gaming, AI content moderation analyzes player interactions in real time to detect toxic behavior, harmful content, and policy violations. Machine learning models assess chat, voice, and in-game media against predefined rules, flagging or blocking inappropriate content. For example, let’s say a player is struggling with in-game harassment and cheating. With AI-powered moderation tools, chat logs and gameplay behavior are analyzed in real time, identifying toxic players for automated bans. This results in healthier in-game communities, improved player retention, and a more pleasant user experience.Stopping cybercriminals from ruining the gaming experienceAnother factor negatively impacting the gaming experience on a larger scale is cyberattacks. Our recent Radar Report showed that the gaming industry experienced the highest number of DDoS attacks in the last quarter of 2024. The sector is also vulnerable to bot abuse, API attacks, data theft, and account hijacking.Prolonged downtime damages a studio’s reputation—something hackers know all too well. As a result, gaming platforms are prime targets for ransomware, extortion, and data breaches. Cybercriminals target both servers and individual players’ personal information. This naturally leads to a drop in player engagement and widespread frustration.Luckily, security solutions can be put in place to protect gamers from this kind of intrusion:DDoS protection shields game servers from volumetric and targeted attacks, guaranteeing uptime even during high-profile launches. In the event of an attack, malicious traffic is mitigated in real-time, preventing zero downtime and guaranteeing seamless player experiences.WAAP secures game APIs and web services from bot abuse, credential stuffing, and data breaches. It protects against in-game fraud, exploits, and API vulnerabilities.Edge security solutions reduce latency, protecting players without affecting game performance. The Gcore security stack helps ensure fair play, protecting revenue and player retention.Take the first steps to protecting your customersGaming should be a positive and fun experience, not fraught with harassment, bullying, and the threat of cybercrime. Harmful and disruptive behaviors can make it feel unsafe for everyone to play as they wish. That’s why gaming studios should consider how to implement the right technology to help players feel protected.Gcore was founded in 2014 with a focus on the gaming industry. Over the years, we have thwarted many large DDoS attacks and continue to offer robust protection for companies such as Nitrado, Saber, and Wargaming. Our gaming specialization has also led us to develop game-specific countermeasures. If you’d like to learn more about how our cybersecurity solutions for gaming can help you, get in touch.Speak to our gaming solutions experts today

Gcore and Northern Data Group partner to transform global AI deployment

Gcore and Northern Data Group have joined forces to launch a new chapter in enterprise AI. By combining high-performance infrastructure with intelligent software, the commercial and technology partnership will make it dramatically easier to deploy AI applications at scale—wherever your users are. At the heart of this exciting new partnership is a shared vision: global, low-latency, secure AI infrastructure that’s simple to use and ready for production.Introducing the Intelligence Delivery NetworkAI adoption is accelerating, but infrastructure remains a major bottleneck. Many enterprises discover blockers regarding latency, compliance, and scale, especially when deploying models in multiple regions. The traditional cloud approach often introduces complexity and overhead just when speed and simplicity matter most.That’s where the Intelligence Delivery Network (IDN) comes in.The IDN is a globally distributed AI network built to simplify inference at the edge. It combines Northern Data’s state-of-the-art infrastructure with Gcore Everywhere Inference to deliver scalable, high-performance AI across 180 global points of presence.By locating AI workloads closer to end users, the IDN reduces latency and improves responsiveness—without compromising on security or compliance. Its geo-zoned, geo-balanced architecture ensures resilience and data locality while minimizing deployment complexity.A full AI deployment toolkitThe IDN is a full AI deployment toolkit built on Gcore’s cloud-native platform. The solution offers a vertically integrated stack designed for speed, flexibility, and scale. Key components include the following:Managed Kubernetes for orchestrationA container-based deployment engine (Docker)An extensive model library, supporting open-source and custom modelsEverywhere Inference, Gcore’s software for distributing inferencing across global edge points of presenceThis toolset enables fast, simple deployments of AI workloads—with built-in scaling, resource management, and observability. The partnership also unlocks access to one of the world’s largest liquid-cooled GPU clusters, giving AI teams the horsepower they need for demanding workloads.Whether you’re building a new AI-powered product or scaling an existing model, the IDN provides a clear path from development to production.Built for scale and performanceThe joint solution is built with the needs of enterprise customers in mind. It supports multi-tenant deployments, integrates with existing cloud-native tools, and prioritizes performance without sacrificing control. Customers gain the flexibility to deploy wherever and however they need, with enterprise-grade security and compliance baked in.Andre Reitenbach, CEO of Gcore, comments, “This collaboration supports Gcore’s mission to connect the world to AI anywhere and anytime. Together, we’re enabling the next generation of AI applications with low latency and massive scale.”“We are combining Northern Data’s heritage of HPC and Data Center infrastructure expertise, with Gcore’s specialization in software innovation and engineering.” says Aroosh Thillainathan, Founder and CEO of Northern Data Group. “This allows us to accelerate our vision of delivering software-enabled AI infrastructure across a globally distributed compute network. This is a key moment in time where the use of AI solutions is evolving, and we believe that this partnership will form a key part of it.”Deploy AI smarter and faster with Gcore and Northern Data GroupAI is the new foundation of digital business. Deploying it globally shouldn’t require a team of infrastructure engineers. With Gcore and Northern Data Group, enterprise teams get the tools and support they need to run AI at the edge at scale and at speed.No matter what you and your teams are trying to achieve with AI, the new Intelligence Delivery Network is built to help you deploy smarter and faster.Read the full press release

How to achieve compliance and security in AI inference

AI inference applications today handle an immense volume of confidential information, so prioritizing data privacy is paramount. Industries such as finance, healthcare, and government rely on AI to process sensitive data—detecting fraudulent transactions, analyzing patient records, and identifying cybersecurity threats in real time. While AI inference enhances efficiency, decision-making, and automation, neglecting security and compliance can lead to severe financial penalties, regulatory violations, and data breaches. Industries handling sensitive information—such as finance, healthcare, and government—must carefully manage AI deployments to avoid costly fines, legal action, and reputational damage.Without robust security measures, AI inference environments present a unique security challenge as they process real-time data and interact directly with users. This article explores the security challenges enterprises face and best practices for guaranteeing compliance and protecting AI inference workloads.Key inference security and compliance challengesAs businesses scale AI-powered applications, they will likely encounter challenges in meeting regulatory requirements, preventing unauthorized access, and making sure that AI models (whether proprietary or open source) produce reliable and unaltered outputs.Data privacy and sovereigntyRegulations such as GDPR (Europe), CCPA (California), HIPAA (United States, healthcare), and PCI DSS (finance) impose strict rules on data handling, dictating where and how AI models can be deployed. Businesses using public cloud-based AI models must verify that data is processed and stored in appropriate locations to avoid compliance violations.Additionally, compliance constraints restrict certain AI models in specific regions. Companies must carefully evaluate whether their chosen models align with regulatory requirements in their operational areas.Best practices:To maintain compliance and avoid legal risks:Deploy AI models in regionally restricted environments to keep sensitive data within legally approved jurisdictions.Use Smart Routing with edge inference to process data closer to its source, reducing cross-border security risks.Model security risksBad actors can manipulate AI models to produce incorrect outputs, compromising their reliability and integrity. This is known as adversarial manipulation, where small, intentional alterations to input data can deceive AI models. For example, researchers have demonstrated that minor changes to medical images can trick AI diagnostic models into misclassifying benign tumors as malignant. In a security context, attackers could exploit these vulnerabilities to bypass fraud detection in finance or manipulate AI-driven cybersecurity systems, leading to unauthorized transactions or undetected threats.To prevent such threats, businesses must implement strong authentication, encryption strategies, and access control policies for AI models.Best practices:To prevent adversarial attacks and maintain model integrity:Enforce strong authentication and authorization controls to limit access to AI models.Encrypt model inputs and outputs to prevent data interception and tampering.Endpoint protection for AI deploymentsThe security of AI inference does not stop at the model level. It also depends on where and how models are deployed.For private deployments, securing AI endpoints is crucial to prevent unauthorized access.For public cloud inference, leveraging CDN-based security can help protect workloads against cyber threats.Processing data within the country of origin can further reduce compliance risks while improving latency and security.AI models rely on low-latency, high-performance processing, but securing these workloads against cyber threats is as critical as optimizing performance. CDN-based security strengthens AI inference protection in the following ways:Encrypts model interactions with SSL/TLS to safeguard data transmissions.Implements rate limiting to prevent excessive API requests and automated attacks.Enhances authentication controls to restrict access to authorized users and applications.Blocks bot-driven threats that attempt to exploit AI vulnerabilities.Additionally, CDN-based security supports compliance by:Using Smart Routing to direct AI workloads to designated inference nodes, helping align processing with data sovereignty laws.Optimizing delivery and security while maintaining adherence to regional compliance requirements.While CDNs enhance security and performance by managing traffic flow, compliance ultimately depends on where the AI model is hosted and processed. Smart Routing allows organizations to define policies that help keep inference within legally approved regions, reducing compliance risks.Best practices:To protect AI inference environments from endpoint-related threats, you should:Deploy monitoring tools to detect unauthorized access, anomalies, and potential security breaches in real-time.Implement logging and auditing mechanisms for compliance reporting and proactive security tracking.Secure AI inference with Gcore Everywhere InferenceAI inference security and compliance are critical as businesses handle sensitive data across multiple regions. Organizations need a robust, security-first AI infrastructure to mitigate risks, reduce latency, and maintain compliance with data sovereignty laws.Gcore’s edge network and CDN-based security provide multi-layered protection for AI workloads, combining DDoS protection and WAAP (web application and API protection. By keeping inference closer to users and securing every stage of the AI pipeline, Gcore helps businesses protect data, optimize performance, and meet industry regulations.Explore Gcore AI Inference

Mobile World Congress 2025: the year of AI

As Mobile World Congress wrapped up for another year, it was apparent that only one topic was on everyone’s minds: artificial intelligence.Major players—such as Google, Ericsson, and Deutsche Telekom—showcased the various ways in which they’re piloting AI applications—from operations to infrastructure management and customer interactions. It’s clear there is a great desire to see AI move from the research lab into the real world, where it can make a real difference to people’s everyday lives. The days of more theoretical projects and gimmicky robots seem to be behind us: this year, it was all about real-world applications.MWC has long been an event for telecommunications companies to launch their latest innovations, and this year was no different. Telco companies demonstrated how AI is now essential in managing network performance, reducing operational downtime, and driving significant cost savings. The industry consensus is that AI is no longer experimental but a critical component of modern telecommunications. While many of the applications showcased were early-stage pilots and stakeholders are still figuring out what wide-scale, real-time AI means in practice, the ambition to innovate and move forward on adoption is clear.Here are three of the most exciting AI developments that caught our eye in Barcelona:Conversational AIChatbots were probably the key telco application showcased across MWC, with applications ranging from contact centers, in-field repairs, personal assistants transcribing calls, booking taxis and making restaurant reservations, to emergency responders using intelligent assistants to manage critical incidents. The easy-to-use, conversational nature of chatbots makes them an attractive means to deploy AI across functions, as it doesn’t require users to have any prior hands-on machine learning expertise.AI for first respondersEmergency responders often rely on telco partners to access novel, technology-enabled solutions to address their challenges. One such example is the collaboration between telcos and large language model (LLM) companies to deliver emergency-response chatbots. These tailored chatbots integrate various decision-making models, enabling them to quickly parse vast data streams and suggest actionable steps for human operators in real time.This collaboration not only speeds up response times during critical situations but also enhances the overall effectiveness of emergency services, ensuring that support reaches those in need faster.Another interesting example in this field was the Deutsche Telekom drone with an integrated LTE base station, which can be deployed in emergencies to deliver temporary coverage to an affected area or extend the service footprint during sports events and festivals, for example.Enhancing Radio Access Networks (RAN)Telecommunication companies are increasingly turning to advanced applications to manage the growing complexity of their networks and provide high-quality, uninterrupted service for their customers.By leveraging artificial intelligence, these applications can proactively monitor network performance, detect anomalies in real time, and automatically implement corrective measures. This not only enhances network reliability but reduces operational costs and minimizes downtime, paving the way for more efficient, agile, and customer-focused network management.One notable example was the Deutsche Telekom and Google Cloud collaboration: RAN Guardian. Built using Gemini 2.0, this agent analyzes network behavior, identifies performance issues, and takes corrective measures to boost reliability, lower operational costs, and improve customer experience.As telecom networks become more complex, conventional rule-based automation struggles to handle real-time challenges. In contrast, agentic AI employs large language models (LLMs) and sophisticated reasoning frameworks to create intelligent systems capable of independent thought, action, and learning.What’s next in the world of AI?The innovation on show at MWC 2025 confirms that AI is rapidly transitioning from a research topic to a fundamental component of telecom and enterprise operations.  Wide-scale AI adoption is, however, a balancing act between cost, benefit, and risk management.Telcos are global by design, operating in multiple regions with varying business needs and local regulations. Ensuring service continuity and a good return on investment from AI-driven applications while carefully navigating regional laws around data privacy and security is no mean feat.If you want to learn more about incorporating AI into your business operations, we can help.Gcore Everywhere Inference significantly simplifies large-scale AI deployments by providing a simple-to-use serverless inference tool that abstracts the complexity of AI hardware and allows users to deploy and manage AI inference globally with just a few clicks. It enables fully automated, auto-scalable deployment of inference workloads across multiple geographic locations, making it easier to handle fluctuating requirements, thus simplifying deployment and maintenance.Learn more about Gcore Everywhere Inference

Everywhere Inference updates: new AI models and enhanced product documentation

This month, we’re rolling out new features and updates to enhance AI model accessibility, performance, and cost-efficiency for Everywhere Inference. From new model options to updated product documentation, here’s what’s new in February.Expanding the model libraryWe’ve added several powerful models to Gcore Everywhere Inference, providing more options for AI inference and fine-tuning. This includes three DeepSeek R1 options, state-of-the-art open-weight models optimized for various NLP tasks.DeepSeek’s recent rise represents a major shift in AI accessibility and enterprise adoption. Learn more about DeepSeek’s rise and what it means for businesses in our dedicated blog. Or, explore what DeepSeek’s popularity means for Europe.The following new models are available now in our model library:QVQ-72B-Preview: A large-scale language model designed for advanced reasoning and language understanding.DeepSeek-R1-Distill-Qwen-14B: A distilled version of DeepSeek R1, providing a balance between efficiency and performance for language processing tasks.DeepSeek-R1-Distill-Qwen-32B: A more robust distilled model designed for enterprise-scale AI applications requiring high accuracy and inference speed.DeepSeek-R1-Distill-Llama-70B: A distilled version of Llama 70B, offering significant improvements in efficiency while maintaining strong performance in complex NLP tasks.Phi-3.5-MoE-instruct: A high-quality, reasoning-focused model supporting multilingual capabilities with a 128K context length.Phi-4: A 14-billion-parameter language model excelling in mathematics and advanced language processing.Mistral-Small-24B-Instruct-2501: A 24-billion-parameter model optimized for low-latency AI tasks, performing competitively with larger models.These additions give developers more flexibility in selecting the right models for their use cases, whether they require large-scale reasoning, multimodal capabilities, or optimized inference efficiency. The Gcore model library offers numerous popular models available at the click of a button, but you can also bring your own custom model just as easily.Everywhere Inference product documentationTo help you get the most out of Gcore Everywhere Inference, we’ve expanded our product documentation. Whether you’re deploying AI models, fine-tuning performance, or scaling inference workloads, our docs provide in-depth guidance, API references, and best practices for seamless AI deployment.Choose Gcore for intuitive, powerful AI deploymentWith these updates, Gcore Everywhere Inference continues to provide the latest and best in AI inference. If you need speed, efficiency, and flexibility, get in touch. We’d love to explore how we can support and enhance your AI workloads.Get a complimentary AI consultation

How to optimize ROI with intelligent AI deployment

As generative AI evolves, the cost of running AI workloads has become a pressing concern. A significant portion of these costs will come from inference—the process of applying trained AI models to real-world data to generate responses, predictions, or decisions. Unlike training, which occurs periodically, inference happens continuously, handling vast amounts of user queries and data in real-time. This persistent demand makes managing inference costs a critical challenge, as inefficiencies can gradually drive up expenses.Cost considerations for AI inferenceOptimizing AI inference isn’t just about improving performance—it’s also about controlling costs. Several factors influence the total expense of running AI models at scale, from the choice of hardware to deployment strategies. As businesses expand their AI capabilities, they must navigate the financial trade-offs between speed, accuracy, and infrastructure efficiency.Several factors contribute to inference costs:Compute costs: AI inference relies heavily on GPUs and specialized hardware. These resources are expensive, and as demand grows, so do the associated costs of maintaining and scaling them.Latency vs. cost trade-off: Real-time applications like recommendation systems or conversational AI require ultra-fast processing. Achieving low latency often demands premium resources, creating a challenging trade-off between performance and cost.Operational overheads: Managing inference at scale can lead to rising expenses, particularly as query volumes increase. While cloud-based inference platforms offer flexibility and scalability, it’s important to implement cost-control measures to avoid unnecessary overhead. Optimizing workload distribution and leveraging adaptive scaling can help mitigate these costs.Balancing performance, cost, and efficiency in AI deploymentThe AI marketplace is teeming with different options and configurations. This can make critical decisions about inference optimization, like model selection, infrastructure, and operational management, feel overwhelming and easy to get wrong. We recommend these key considerations when navigating the choices available:Selecting the right model sizeAI models range from massive foundational models to smaller, task-specific in-house solutions. While large models excel in complex reasoning and general-purpose tasks, smaller models can deliver cost-efficient, accurate results for specific applications. Finding the right balance often involves:Experimenting during the proof-of-concept (POC) phase to test different model sizes and accuracy levels.Prioritizing smaller models where possible without compromising task performance.Matching compute with task requirementsNot every workload requires the same level of computational power. By matching hardware resources to model and task requirements, businesses can significantly reduce costs while maintaining performance.Optimizing infrastructure for cost-effective inferenceInfrastructure plays a pivotal role in determining inference efficiency. Here are three emerging trends:Leveraging edge inference: Moving inference closer to the data source can minimize latency and reduce reliance on more expensive centralized cloud solutions. This approach can optimize costs and improve regulatory compliance for data-sensitive industries.Repatriating compute: Many businesses are moving away from hyperscalers—large cloud providers like AWS, Google Cloud, and Microsoft Azure—to local, in-country cloud providers for simplified compliance and often lower costs. This shift enables tighter cost control and can mitigate the unpredictable expenses often associated with cloud platforms.Dynamic inference management tools: Advanced monitoring tools help track real-time performance and spending, enabling proactive adjustments to optimize ROI.Building a sustainable AI futureGcore’s solutions are designed to help you achieve the ideal balance between cost, performance, and scalability. Here’s how:Smart workload routing: Gcore’s intelligent routing technology ensures workloads are processed at the most suitable edge location. While proximity to the user is prioritized for lower latency and compliance, this approach can also save cost by keeping inference closer to data sources.Per-minute billing and cost tracking: Gcore’s platform offers unparalleled budget control with granular per-minute billing. This transparency allows businesses to monitor and optimize their spending closely.Adaptive scaling: Gcore’s adaptive scaling capabilities allocate just the right amount of compute power needed for each workload, reducing resource waste without compromising performance.How Gcore enhances AI inference efficiencyAs AI adoption grows, optimizing inference efficiency becomes critical for sustainable deployment. Carefully balancing model size, infrastructure, and operational strategies can significantly enhance your ROI.Gcore’s Everywhere Inference solution provides a reliable framework to achieve this balance, delivering cost-effective, high-performance AI deployment at scale.Explore Everywhere Inference

Subscribe to our newsletter

Get the latest industry trends, exclusive insights, and Gcore updates delivered straight to your inbox.